Reconfigurable Intelligent Surfaces (RISs) are a promising technique for enhancing the performance of Next Generation (NextG) wireless communication systems in terms of both spectral and energy efficiency, as well as resource utilization. However, current RIS research has primarily focused on theoretical modeling and Physical (PHY) layer considerations only. Full protocol stack emulation and accurate modeling of the propagation characteristics of the wireless channel are necessary for studying the benefits introduced by RIS technology across various spectrum bands and use-cases. In this paper, we propose, for the first time: (i) accurate PHY layer RIS-enabled channel modeling through Geometry-Based Stochastic Models (GBSMs), leveraging the QUAsi Deterministic RadIo channel GenerAtor (QuaDRiGa) open-source statistical ray-tracer; (ii) optimized resource allocation with RISs by comprehensively studying energy efficiency and power control on different portions of the spectrum through a single-leader multiple-followers Stackelberg game theoretical approach; (iii) full-stack emulation and performance evaluation of RIS-assisted channels with SCOPE/srsRAN for Enhanced Mobile Broadband (eMBB) and Ultra Reliable and Low Latency Communications (URLLC) applications in the worlds largest emulator of wireless systems with hardware-in-the-loop, namely Colosseum. Our findings indicate (i) the significant power savings in terms of energy efficiency achieved with RIS-assisted topologies, especially in the millimeter wave (mmWave) band; and (ii) the benefits introduced for Sub-6 GHz band User Equipments (UEs), where the deployment of a relatively small RIS (e.g., in the order of 100 RIS elements) can result in decreased levels of latency for URLLC services in resource-constrained environments.


翻译:暂无翻译

1
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
12+阅读 · 2023年5月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员