Text-to-video (T2V) generation is a rapidly growing research area that aims to translate the scenes, objects, and actions within complex video text into a sequence of coherent visual frames. We present FlowZero, a novel framework that combines Large Language Models (LLMs) with image diffusion models to generate temporally-coherent videos. FlowZero uses LLMs to understand complex spatio-temporal dynamics from text, where LLMs can generate a comprehensive dynamic scene syntax (DSS) containing scene descriptions, object layouts, and background motion patterns. These elements in DSS are then used to guide the image diffusion model for video generation with smooth object motions and frame-to-frame coherence. Moreover, FlowZero incorporates an iterative self-refinement process, enhancing the alignment between the spatio-temporal layouts and the textual prompts for the videos. To enhance global coherence, we propose enriching the initial noise of each frame with motion dynamics to control the background movement and camera motion adaptively. By using spatio-temporal syntaxes to guide the diffusion process, FlowZero achieves improvement in zero-shot video synthesis, generating coherent videos with vivid motion.
翻译:暂无翻译