Data about individuals may contain private and sensitive information. The differential privacy (DP) was proposed to address the problem of protecting the privacy of each individual while keeping useful information about a population. Sealfon (2016) introduced a private graph model in which the graph topology is assumed to be public while the weight information is assumed to be private. That model can express hidden congestion patterns in a known transportation system. In this paper, we revisit the problem of privately releasing approximate distances between all pairs of vertices in (Sealfon 2016). Our goal is to minimize the additive error, namely the difference between the released distance and actual distance under private setting. We propose improved solutions to that problem for several cases. For the problem of privately releasing all-pairs distances, we show that for tree with depth $h$, we can release all-pairs distances with additive error $O(\log^{1.5} h \cdot \log^{1.5} V)$ for fixed privacy parameter where $V$ the number of vertices in the tree, which improves the previous error bound $O(\log^{2.5} V)$, since the size of $h$ can be as small as $O(\log V)$. Our result implies that a $\log V$ factor is saved, and the additive error in tree can be smaller than the error on array/path. Additionally, for the grid graph with arbitrary edge weights, we also propose a method to release all-pairs distances with additive error $\tilde O(V^{3/4}) $ for fixed privacy parameters. On the application side, many cities like Manhattan are composed of horizontal streets and vertical avenues, which can be modeled as a grid graph.
翻译:有关个人的数据可能包含私人和敏感的信息。 不同的隐私( DP) 是为了解决保护每个人隐私的问题, 同时保存对人口有用的信息。 Sealfon( Sealfon) (2016) 引入了私人图形模型模型, 该模型假设图形表层是公开的, 而重量信息假定是私有的。 该模型可以在已知的运输系统中显示隐藏的堵塞模式。 在本文中, 我们重新研究私人释放所有双面脊椎之间大约距离的问题( 西尔顿 2016 ) 。 我们的目标是尽可能减少添加错误, 即在私人设置下释放的距离和实际距离之间的差别。 我们建议改进对几个参数的解决方案。 对于私人释放所有面的图层, 假设是公开的。 对于深度为$( log) 的信息, 我们可以在已知的运输系统中释放所有面的距离, $( h) h\ cddoot h\ log {1.5} V) 。 在固定隐私参数参数中, $( leveld palice) des the palice off the pall $( $Oral_ 2.5} Vral_ rate) rodeal_ rodeal_ $_ rode rodeal_ ex $_ $_ ex ex $_ $_ ex_ rubal_ rude $_ ex ex ex ex ex ex $__ $_ $__ exbal___ ral_ $_ ral_ ral_ ral__ $_ ral_ ral_ ral____ ex_______________________________________________________________________________________________________ ral____________________________