This study focuses on the efficiency of message-passing-based decoding algorithms for polar and low-density parity-check (LDPC) codes. Both successive cancellation (SC) and belief propagation (BP) decoding algorithms are studied under the message-passing framework. Counter-intuitively, SC decoding demonstrates the highest decoding efficiency, although it was considered a weak decoder regarding error-correction performance. We analyze the complexity-performance tradeoff to dynamically track the decoding efficiency, where the complexity is measured by the number of messages passed (NMP), and the performance is measured by the statistical distance to the maximum a posteriori (MAP) estimate. This study offers new insight into the contribution of each message passing in decoding, and compares various decoding algorithms on a message-by-message level. The analysis corroborates recent results on terabits-per-second polar SC decoders, and might shed light on better scheduling strategies.
翻译:本研究侧重于基于信息传递的极地和低密度对等检查(LDPC)代码解码算法的效率。连续的取消(SC)和信仰传播(BP)解码算法都是在信息传递框架之下研究的。反直觉的,SC解码法显示了最高解码效率,尽管在错误校正性能方面被认为是一个薄弱的解码算法。我们分析了复杂的性能权衡法,以动态跟踪解码效率,其复杂性以所传递信息的数量衡量(NMP),其性能则以统计距离与后传(MAP)估计数之间的最大值衡量。本研究对每次传递的信息解码的贡献提供了新的洞见,并将各种解码算法在逐条电文级别上进行了比较。该分析证实了最近关于天线每秒极SC解码器的结果,并可能揭示出更好的时间安排战略。