Even though rate-distortion optimization is a crucial part of traditional image and video compression, not many approaches exist which transfer this concept to end-to-end-trained image compression. Most frameworks contain static compression and decompression models which are fixed after training, so efficient rate-distortion optimization is not possible. In a previous work, we proposed RDONet, which enables an RDO approach comparable to adaptive block partitioning in HEVC. In this paper, we enhance the training by introducing low-complexity estimations of the RDO result into the training. Additionally, we propose fast and very fast RDO inference modes. With our novel training method, we achieve average rate savings of 19.6% in MS-SSIM over the previous RDONet model, which equals rate savings of 27.3% over a comparable conventional deep image coder.
翻译:尽管比例扭曲优化是传统图像和视频压缩的一个关键部分,但还没有很多方法将这一概念转换为终端到终端培训图像压缩。 大多数框架包含在培训后固定的静态压缩和降压模型,因此不可能实现高效的率扭曲优化。 在先前的一项工作中,我们提议了RDONet, 使RDO方法能够与HEVC的适应性区块分割相近。 在本文中,我们通过在培训中引入对 RDO 的低兼容性估计来强化培训。 此外,我们提出了快速和非常快速的 RDO 推断模式。我们采用我们的新培训方法,实现了MS-SSIM 平均节减率19.6%,而以前的 RDONet 模式相当于一个类似的传统深层图像编码器的节减率27.3 % 。