项目名称: 基于深度卷积神经网络的多源遥感图像时空融合方法研究
项目编号: No.41501377
项目类型: 青年科学基金项目
立项/批准年度: 2016
项目学科: 天文学、地球科学
项目作者: 宋慧慧
作者单位: 南京信息工程大学
项目金额: 20万元
中文摘要: 以往的时空融合模型主要基于小规模数据,通过简单的线性映射模型或者图像降质模型在两类传感器图像之间建立映射关系,未考虑异源遥感数据之间空间尺度差异大的问题,因此在融合精度和实用性方面都有待提高。考虑到海量遥感数据的特性,本项目研究深度卷积神经网络在遥感图像时空融合中的应用,针对以上融合模型存在的问题分别从模型、算法和应用角度提出相应的解决方案。主要研究内容包括:利用深度卷积神经网络隐层的非线性映射关系,在异源遥感图像之间建立动态自适应的映射模型;设计层数自适应级联卷积神经网络来处理异源遥感数据之间的空间尺度差异大问题,从而提高融合精度;探索卷积神经网络的在线更新机制来处理海量遥感数据,以增加算法的实用性。
中文关键词: 时空融合;卷积神经网络;非线性映射;级联网络
英文摘要: The previous spatio-temporal fusion models mainly focused on small datasets and the simple linear mapping model or the image degradation model, and lacked consideration for the big difference in spatial scale between different types of remote sensors, leading to the improvement space in both accuracy and practicality. This project aims to study the application of deep convolutional neural network in spatio-temporal image fusion by utilizing the properties of massive remote sensing data and proposes solutions for existing problems in previous models in aspect of model, algorithm and application. The main research contents include: utilizing the non-linear mapping of deep convolutional neural network to build a dynamic and adaptive mapping model; designing layer-adaptive cascaded convolutional network to deal with the big difference in spatial scale between different types of remote data, thereby increasing the accuracy of the designed algorithm; exploring the online update mechanism of convolutional neural network to deal with massive remote sensing data, thereby enhancing the practicality of the designed algorithm.
英文关键词: spatio-temporal fusion;convolutional neural network;non-linear mapping;cascade network