Object-centric event data represent processes from the point of view of all the involved object types. This perspective has gained interest in recent years as it supports the analysis of processes that previously could not be adequately captured, due to the lack of a clear case notion as well as an increasing amount of output data that needs to be stored. Although publicly available event logs are crucial artifacts for researchers to develop and evaluate novel process mining techniques, the currently available object-centric event logs have limitations in this regard. Specifically, they mainly focus on control-flow and rarely contain objects with attributes that change over time, even though this is not realistic, as the attribute values of objects can be altered during their lifecycle. This paper addresses this gap by providing two means of establishing object-centric datasets with dynamically evolving attributes. First, we provide event log generators, which allow researchers to generate customized, artificial logs with dynamic attributes in the recently proposed DOCEL format. Second, we propose and evaluate an algorithm to convert OCEL logs into DOCEL logs, which involves the detection of event attributes that capture evolving object information and the creation of dynamic attributes from these. Through these contributions, this paper supports the advancement of object-centric process analysis by providing researchers with new means to obtain relevant data to use during the development of new techniques.
翻译:暂无翻译