Diabetic retinopathy (DR) is a complication of diabetes, and one of the major causes of vision impairment in the global population. As the early-stage manifestation of DR is usually very mild and hard to detect, an accurate diagnosis via eye-screening is clinically important to prevent vision loss at later stages. In this work, we propose an ensemble method to automatically grade DR using ultra-wide optical coherence tomography angiography (UW-OCTA) images available from Diabetic Retinopathy Analysis Challenge (DRAC) 2022. First, we adopt the state-of-the-art classification networks, i.e., ResNet, DenseNet, EfficientNet, and VGG, and train them to grade UW-OCTA images with different splits of the available dataset. Ultimately, we obtain 25 models, of which, the top 16 models are selected and ensembled to generate the final predictions. During the training process, we also investigate the multi-task learning strategy, and add an auxiliary classification task, the Image Quality Assessment, to improve the model performance. Our final ensemble model achieved a quadratic weighted kappa (QWK) of 0.9346 and an Area Under Curve (AUC) of 0.9766 on the internal testing dataset, and the QWK of 0.839 and the AUC of 0.8978 on the DRAC challenge testing dataset.
翻译:在这项工作中,我们提出一种混合方法,即使用超大型光学一致性成像摄影成像法(UW-OCTA)自动进行DR,这是糖尿病并发症,也是全球人口视力受损的主要原因之一。首先,我们采用DR的早期表现通常非常温和,很难检测,因此,通过视力筛选进行准确的诊断对于防止以后阶段的视力丧失至关重要。在这项工作中,我们提出一种混合方法,使用超大型光学一致性成像摄影成像法(UW-OCTA)自动进行DR(UW-OCTA),使用从2022年糖尿病抗逆转录病毒分析挑战(DRAC)中获取的图像。首先,我们采用了最新水平的分类网络,即ResNet、DenseNet、效率Net和VGGGG,并用现有数据集的不同部分来训练他们进行UW-OCTA图像的等级。我们最终获得了25个模型,其中的16个顶级模型被选中并被封以产生最后的预测。在培训过程中,我们还调查多任务学习战略,并增加一个辅助的分类任务,即图像质量评估,改进了0.98-RQQ的模型。