Inertial Navigation Systems (INS) are a key technology for autonomous vehicles applications. Recent advances in estimation and filter design for the INS problem have exploited geometry and symmetry to overcome limitations of the classical Extended Kalman Filter (EKF) approach that formed the mainstay of INS systems since the mid-twentieth century. The industry standard INS filter, the Multiplicative Extended Kalman Filter (MEKF), uses a geometric construction for attitude estimation coupled with classical Euclidean construction for position, velocity and bias estimation. The recent Invariant Extended Kalman Filter (IEKF) provides a geometric framework for the full navigation states, integrating attitude, position and velocity, but still uses the classical Euclidean construction to model the bias states. In this paper, we use the recently proposed Equivariant Filter (EqF) framework to derive a novel observer for biased inertial-based navigation in a fully geometric framework. The introduction of virtual velocity inputs with associated virtual bias leads to a full equivariant symmetry on the augmented system. The resulting filter performance is evaluated with both simulated and real-world data, and demonstrates increased robustness to a wide range of erroneous initial conditions, and improved accuracy when compared with the industry standard Multiplicative EKF (MEKF) approach.
翻译:惰性导航系统(INS)是自主车辆应用的关键技术。最近,在INS问题的估算和过滤设计方面的最新进展利用了几何和对称性来克服古典扩展卡尔曼过滤器(EKF)的局限性,这是二十世纪中叶以来作为INS系统支柱的古典扩展卡尔曼过滤器(EKF)的局限性。工业标准 INS过滤器,即倍增扩展卡尔曼过滤器(MEKF),使用几何结构来进行姿态估计,同时使用古典的Euclidean结构来进行定位、速度和偏差估计。最近的Inevariant 扩展卡尔曼过滤器(IEKF)为全导航状态、整合态度、位置和速度提供了几何框架,但依然使用古典的Euclidean构造来模拟偏差状态。在本论文中,我们使用最近提议的“Equivariant过滤器(EqF)框架来为偏向惯性惯性惯性导航提供新型观察者,同时进行定位、速度和相关的虚拟偏差估计。最近的虚拟偏差性卡尔曼过滤器过滤器在系统上提供了完全等的对齐。由此产生的过滤性框架的精确度评估,在模拟和虚拟和虚拟和真实性方面,在模拟和真实性方面,在模拟和真实性上均度上均度上均度上均度上均度上都以模拟和模拟和真实性地对准度上,在模拟和真实性地进行了评估。