Visual-inertial odometry (VIO) is the pose estimation backbone for most AR/VR and autonomous robotic systems today, in both academia and industry. However, these systems are highly sensitive to the initialization of key parameters such as sensor biases, gravity direction, and metric scale. In practical scenarios where high-parallax or variable acceleration assumptions are rarely met (e.g. hovering aerial robot, smartphone AR user not gesticulating with phone), classical visual-inertial initialization formulations often become ill-conditioned and/or fail to meaningfully converge. In this paper we target visual-inertial initialization specifically for these low-excitation scenarios critical to in-the-wild usage. We propose to circumvent the limitations of classical visual-inertial structure-from-motion (SfM) initialization by incorporating a new learning-based measurement as a higher-level input. We leverage learned monocular depth images (mono-depth) to constrain the relative depth of features, and upgrade the mono-depth to metric scale by jointly optimizing for its scale and shift. Our experiments show a significant improvement in problem conditioning compared to a classical formulation for visual-inertial initialization, and demonstrate significant accuracy and robustness improvements relative to the state-of-the-art on public benchmarks, particularly under motion-restricted scenarios. We further extend this improvement to implementation within an existing odometry system to illustrate the impact of our improved initialization method on resulting tracking trajectories.
翻译:视觉皮下观察测量(VIO)是当今学术界和工业界大多数AR/VR和自主机器人系统(VO)的估算支柱。然而,这些系统对于感官偏向、重力方向和度量尺度等关键参数的初始化非常敏感。在高双向或可变加速度假设很少得到满足的实际情况下(例如,空中悬浮机器人、智能手机用户不使用手机),古典视觉皮下初始化配方往往变得不成熟和/或未能有意义地趋同。在本文件中,我们专门针对这些对电动使用至关重要的低感光度假设进行视觉皮下初始化。我们建议避免经典视觉皮下结构结构初始化的局限性,将基于学习的新测量作为更高层次的投入。我们利用所学的单层深度图像(单层深度)来限制特征的相对深度,并通过进一步优化其规模和变化,将单层深度提升为衡量尺度。我们实验显示,在最初的精确度上将问题大幅改进,在初步的精确度上将调整为现有直观性基准的精确度下,在初步的精确度下,我们展示了在初步的精确度上将问题调整到现有直观状态下,在目前的精确度基准下,我们目前的精确度下,在目前的精确度下将测量下,在当前的精确度下将测量下将测量下将测量下将测量下将测量下将测量下将质性调整到现有测测测测测测测测测测得。我们。