Modern top-performing object detectors depend heavily on backbone networks, whose advances bring consistent performance gains through exploring more effective network structures. However, designing or searching for a new backbone and pre-training it on ImageNet may require a large number of computational resources, making it costly to obtain better detection performance. In this paper, we propose a novel backbone network, namely CBNetV2, by constructing compositions of existing open-sourced pre-trained backbones. In particular, CBNetV2 architecture groups multiple identical backbones, which are connected through composite connections. We also propose a better training strategy with the Assistant Supervision for CBNet-based detectors. Without additional pre-training, CBNetV2 can be integrated into mainstream detectors, including one-stage and two-stage detectors, as well as anchor-based and anchor-free-based ones, and significantly improve their performance by more than 3.0% AP over the baseline on COCO. Also, experiments provide strong evidence showing that composite backbones are more efficient and resource-friendly than pre-trained wider and deeper networks, including manual-based and NAS-based, as well as CNN-based and Transformer-based ones. Particularly, with single-model and single-scale testing, our HTC Dual-Swin-B achieves 58.6% box AP and 51.1% mask AP on COCO test-dev, which is significantly better than the state-of-the-art result (i.e., 57.7% box AP and 50.2% mask AP) achieved by a stronger baseline HTC++ with a larger backbone Swin-L. Code will be released at https://github.com/VDIGPKU/CBNetV2.


翻译:现代顶级性能天体探测器严重依赖主干网,其进步通过探索更有效的网络结构带来一致的绩效收益。然而,设计或寻找新的主干网并在图像网络上进行预培训可能需要大量计算资源,因此要获得更好的检测性能成本很高。在本文中,我们提议建立一个新型的主干网,即CBNetV2, 即CBNetV2, 构建现有开放源的预培训性骨的构成;特别是, CBNetV2 架构组多个相同的主干网,这些主干网通过复合连接连接连接,可以带来一致的绩效收益收益。 我们还提议与CBNBNet2 助理监督员一道制定更好的培训战略。没有额外的培训前,CBNet2 就可以将新的骨干网纳入主流探测器,包括一阶段和两阶段的探测器,以及基于固定基地和固定基地的无固定基地值的网络,并在COCO的基线基准线上大大改进它们的性能,超过3.0%;此外,实验提供了有力的证据表明,复合骨干网比预先训练的更广泛和深层次的网络,包括基于手基的和NAS基础的网络,以及GIS-基础和变式的基线的HA-C-C-C-C-C-C-C-B-C-B-C-B-B-B-B-B-C-C-B-B-B-B-B-C-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-C-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-

0
下载
关闭预览

相关内容

专知会员服务
60+阅读 · 2020年3月19日
【ICLR-2020】网络反卷积,NETWORK DECONVOLUTION
专知会员服务
38+阅读 · 2020年2月21日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
47.4mAP!最强Anchor-free目标检测网络:SAPD
极市平台
13+阅读 · 2019年12月16日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Single-Shot Object Detection with Enriched Semantics
统计学习与视觉计算组
14+阅读 · 2018年8月29日
论文笔记之Feature Selective Networks for Object Detection
统计学习与视觉计算组
21+阅读 · 2018年7月26日
Relation Networks for Object Detection 论文笔记
统计学习与视觉计算组
16+阅读 · 2018年4月18日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
EfficientDet: Scalable and Efficient Object Detection
Arxiv
6+阅读 · 2019年11月20日
Arxiv
11+阅读 · 2019年4月15日
Arxiv
5+阅读 · 2018年5月16日
Arxiv
5+阅读 · 2018年4月17日
VIP会员
相关VIP内容
专知会员服务
60+阅读 · 2020年3月19日
【ICLR-2020】网络反卷积,NETWORK DECONVOLUTION
专知会员服务
38+阅读 · 2020年2月21日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
相关资讯
47.4mAP!最强Anchor-free目标检测网络:SAPD
极市平台
13+阅读 · 2019年12月16日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Single-Shot Object Detection with Enriched Semantics
统计学习与视觉计算组
14+阅读 · 2018年8月29日
论文笔记之Feature Selective Networks for Object Detection
统计学习与视觉计算组
21+阅读 · 2018年7月26日
Relation Networks for Object Detection 论文笔记
统计学习与视觉计算组
16+阅读 · 2018年4月18日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
Top
微信扫码咨询专知VIP会员