Densest subgraph detection is a fundamental graph mining problem, with a large number of applications. There has been a lot of work on efficient algorithms for finding the densest subgraph in massive networks. However, in many domains, the network is private, and returning a densest subgraph can reveal information about the network. Differential privacy is a powerful framework to handle such settings. We study the densest subgraph problem in the edge privacy model, in which the edges of the graph are private. We present the first sequential and parallel differentially private algorithms for this problem. We show that our algorithms have an additive approximation guarantee. We evaluate our algorithms on a large number of real-world networks, and observe a good privacy-accuracy tradeoff when the network has high density.
翻译:Densest Subgraph 探测是一个基本的图形采矿问题, 有很多应用。 在大规模网络中找到最稠密的子谱的高效算法方面已经做了大量工作。 但是, 在许多领域, 网络是私有的, 返回一个最稠密的子谱可以揭示网络的信息。 不同的隐私是处理这些设置的强大框架。 我们研究边缘隐私模型中最稠密的基底图问题, 即图的边缘是私有的。 我们给出了这个问题的第一个相继和平行的私人算法。 我们展示了我们的算法有一个附加近似保证。 我们评估了大量真实世界网络的算法, 当网络密度高时, 我们观察了良好的隐私- 准确交易 。