We study privacy in a distributed learning framework, where clients collaboratively build a learning model iteratively through interactions with a server from whom we need privacy. Motivated by stochastic optimization and the federated learning (FL) paradigm, we focus on the case where a small fraction of data samples are randomly sub-sampled in each round to participate in the learning process, which also enables privacy amplification. To obtain even stronger local privacy guarantees, we study this in the shuffle privacy model, where each client randomizes its response using a local differentially private (LDP) mechanism and the server only receives a random permutation (shuffle) of the clients' responses without their association to each client. The principal result of this paper is a privacy-optimization performance trade-off for discrete randomization mechanisms in this sub-sampled shuffle privacy model. This is enabled through a new theoretical technique to analyze the Renyi Differential Privacy (RDP) of the sub-sampled shuffle model. We numerically demonstrate that, for important regimes, with composition our bound yields significant improvement in privacy guarantee over the state-of-the-art approximate Differential Privacy (DP) guarantee (with strong composition) for sub-sampled shuffled models. We also demonstrate numerically significant improvement in privacy-learning performance operating point using real data sets.
翻译:我们在一个分布式学习框架内研究隐私问题,在这个框架中,客户通过与需要隐私的服务器互动,通过互动互动,合作建立学习模式。受随机随机随机优化和联合学习(FL)范式的激励,我们侧重于以下案例:在每轮中随机地对一小部分数据样本进行分抽样检查,以参与学习过程,这也有利于增进隐私。为了获得更强大的地方隐私保障,我们在洗涤式隐私模式中研究了这一点。在洗涤式隐私模式中,每个客户使用地方差异式私人机制(LDP)随机调整其反应,服务器仅得到客户反应的随机调整(shutle),而没有与每个客户的联系。本文的主要结果是,在每轮中随机抽查了一小部分数据样本,以参与不同随机化机制,从而也有利于增进隐私。我们通过一种新的理论技术来分析次抽样式洗涤式洗涤式的隐私(Renyyi diffarial Remary) 模式(RDP) 。我们用数字显示,对于重要的制度,我们的构成具有约束性定式真实性地改进了真实性模型,我们还展示了重要的隐私结构。