We formally derive interface conditions for modeling fractures in Darcy flow problems and, more generally, thin inclusions in heterogeneous diffusion problems expressed as the divergence of a flux. Through a formal integration of the governing equations within the inclusions, we establish that the resulting interface conditions are of Wentzell type for the flux jump and Robin type for the flux average. Notably, the flux jump condition is unconventional, involving a tangential diffusion operator applied to the average of the solution across the interface. The corresponding weak formulation is introduced, offering a framework that is readily applicable to finite element discretizations. Extensive numerical validation highlights the robustness and versatility of the proposed modeling technique. The results demonstrate its effectiveness in accommodating a wide range of material properties, managing networks of inclusions, and naturally handling fractures with varying apertures -- all without requiring an explicit geometric representation of the fractures.
翻译:暂无翻译