When the semiclassical Herman-Kluk propagator is used for evaluating quantum-mechanical observables or time-correlation functions, the initial conditions for the guiding trajectories are typically sampled from the Husimi density. Here, we employ this propagator to evolve the wavefunction itself. We investigate two grid-free strategies for the initial sampling of the Herman-Kluk propagator applied to the wavefunction and validate the resulting time-dependent wavefunctions evolved in harmonic and anharmonic potentials. In particular, we consider Monte Carlo quadratures based either on the initial Husimi density or on its square root as possible and most natural sampling densities. We prove analytical convergence error estimates and validate them with numerical experiments on the harmonic oscillator and on a series of Morse potentials with increasing anharmonicity. In all cases, sampling from the square root of Husimi density leads to faster convergence of the wavefunction.
翻译:当半古典Herman-Kluk 推进器用于评价量子-机械观测或时间-关系函数时,指导轨迹的初始条件通常是从 Husimi 密度中取样的。 在这里, 我们使用这个推进器来演化波函数本身。 我们调查对波函数应用的Herman- Kluk 推进器初始取样的两种无网格战略, 并验证由此产生的由调力和调力潜能演变而来的时间依赖波子。 特别是, 我们认为 Monte Carlo 二次曲线以最初的 Husimi 密度或正根为基础, 或以其平根为基础, 或以最自然的取样密度为基础。 我们证明分析趋同误估计数, 并用对调力振动器和一系列摩斯 潜力进行的数字实验来验证这些误差, 并增加调和性。 在所有情况下, 从Husimi 密度的平方根取样都会导致波元更快地融合。