We present Falconn++, a novel locality-sensitive filtering (LSF) approach for approximate nearest neighbor search on angular distance. Falconn++ can filter out potential far away points in any hash bucket before querying, which results in higher quality candidates compared to other hashing-based solutions. Theoretically, Falconn++ asymptotically achieves lower query time complexity than Falconn, an optimal locality-sensitive hashing scheme on angular distance. Empirically, Falconn++ achieves a higher recall-speed tradeoff than Falconn on many real-world data sets. Falconn++ is also competitive against HNSW, an efficient representative of graph-based solutions on high search recall regimes.
翻译:我们提出Falconn++(Falconn++)方法,这是用于在角距离上近距离近邻搜索的一种新颖的地方敏感过滤法。 Falconn+(LSF)可以在查询前过滤任何散桶中的潜在远处点,这导致候选人比其他散列解决方案质量更高。理论上,Falconn+(Falconn++)的查询时间复杂性比Falconn(Falconn++)在角距离上的最佳地点敏感散列计划(Falconn+)要低一些。 Falconn+(LSH)在许多真实世界数据集上比Falcon(Falconn)的回收速度要快。 Falconn++(HNSW)也是与HNSW(高搜索回收制度的图表解决方案的有效代表)的竞争对手。