Grouping together similar elements in datasets is a common task in data mining and machine learning. In this paper, we study parallel algorithms for correlation clustering, where each pair of items is labeled either similar or dissimilar. The task is to partition the elements and the objective is to minimize disagreements, that is, the number of dissimilar elements grouped together and similar elements grouped separately. Our main contribution is a parallel algorithm that achieves a $(3 + \varepsilon)$-approximation to the minimum number of disagreements. Our algorithm builds on the analysis of the PIVOT algorithm by Ailon, Charikar, and Newman [JACM'08] that obtains a $3$-approximation in the centralized setting. Our design allows us to sparsify the input graph by ignoring a large portion of the nodes and edges without a large extra cost as compared to the analysis of PIVOT. This sparsification makes our technique applicable on several models of massive graph processing, such as Massively Parallel Computing (MPC) and graph streaming, where sparse graphs can typically be handled much more efficiently. For linear memory models, such as the linear memory MPC and streaming, our approach yields $O(1)$ time algorithms, where the runtime is independent of $\varepsilon$, which only appears in the memory demand.
翻译:将数据集中的类似元素组合为一组是数据挖掘和机器学习的一项共同任务。 在本文中, 我们研究相关组群的平行算法, 每组项目都有相似或不同标签。 任务在于将元素分开, 目标是尽量减少分歧, 即将不同元素的数量分组为一组, 并将相似元素分组为一组。 我们的主要贡献是平行算法, 实现$( 3 +\ varepsilon) $- 匹配到最小的分歧数量。 我们的算法基于 Ailon、 Charikar 和 Newman [JACM'08] 对 PIVOT 算法的分析, 该算法在集中环境中获得3美元对应的值。 我们的设计使我们能够通过忽略大部分节点和边缘的组合和类似元素的组合组合, 而没有比 PIVOT 分析产生巨大的额外成本。 这种推算法使我们的技术只适用于几种大规模图形处理模型, 例如 Massalition 平行计算(MPC) 和 图表流流, 其中稀有原始的图表, 也就是 MAC 的存储流流流 。