项目名称: 基于动态参数信道模型的OFDM系统时变信道估计

项目编号: No.61501187

项目类型: 青年科学基金项目

立项/批准年度: 2016

项目学科: 无线电电子学、电信技术

项目作者: 袁伟娜

作者单位: 华东理工大学

项目金额: 19万元

中文摘要: 信道状态信息估计的好坏直接影响OFDM系统符号检测性能。现有信道参数模型通常假定传播路径数和路径时延是固定的,即静态参数时变信道,不足以描述实际动态环境的情况。本项目围绕径数、时延和增益均未知且随时间变化的信道,即动态参数时变信道开展研究工作。.研究内容包括:(1)动态参数时变信道建模。针对BEM模型复杂度高的问题,重点研究BEM系数跟踪建模问题,降低系统复杂度;(2)动态参数时变信道隐估计算法研究。针对现有的估计方法,都是通过时分复用插入导频序列方式实现,研究基于隐序列的估计方法,提高系统频谱效率。(3)动态参数时变信道径数、时延和增益三参数的联合估计。针对现有的估计方法均是先估计径数延时,再基于静态参数时变信道估计方法估计信道增益,没有考虑各参数估计误差之间关系,研究三参数的联合估计,提高估计精度,从而实现系统整体性能的提升。

中文关键词: 信道估计;动态参数信道模型

英文摘要: The estimation of channel state information has a direct influence on the performance of symbol detection in OFDM systems. However, it is usually assumed the number of paths and the path delays are fixed in the present parametric channel model, named static parametric time-varying channel, which does not adequately reflect the true dynamic environment. To solve the problem, this project studies the dynamic parametric time-varying channel, of which the path number, the path delays and gains may be unknown and vary over time..In this project, we study: 1) dynamic parametric time-varying channel modeling. To solve the problem of high computational complexity of BEM, we focus on tracking and modeling the BEM coefficients to reduce the system complexity. 2) the implicit estimation algorithm of dynamic parametric time-varying channel. In the present methods,channel estimation is achieved by inserting pilot sequences in a time-division-multiplexing way. Therefore the estimation method based on implicit sequences can be used to increase the spectrum efficiency. 3) the joint estimation of the path number, delays and gains of dynamic parametric time-varying channel. In the present methods, which neglect the relationship of the estimation error of each channel parameter, path delays are estimated first, and then the path gains are gained based on static parametric time-varying channel estimation. By estimating each parameter jointly, estimation accuracy and system performance can be improved.

英文关键词: channel estimation;dynamic parametric channel model

成为VIP会员查看完整内容
0

相关内容

基于文档的对话技术研究
专知会员服务
19+阅读 · 2022年2月20日
专知会员服务
34+阅读 · 2021年10月19日
专知会员服务
52+阅读 · 2021年8月29日
机器学习在信道建模中的应用综述
专知会员服务
27+阅读 · 2021年3月16日
【博士论文】解耦合的类脑计算系统栈设计
专知会员服务
30+阅读 · 2020年12月14日
少即是多?非参数语言模型,68页ppt
专知会员服务
23+阅读 · 2020年11月22日
专知会员服务
31+阅读 · 2020年10月13日
语音识别的快速纠错模型FastCorrect系列来了!
微软研究院AI头条
1+阅读 · 2022年3月22日
浅谈分辨率对模型影响以及训练方法
极市平台
0+阅读 · 2022年1月19日
已删除
将门创投
12+阅读 · 2019年7月1日
深度学习之视频图像压缩
论智
13+阅读 · 2018年6月15日
干货|全景视频拼接的关键技术分析
全球人工智能
13+阅读 · 2017年7月15日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
小贴士
相关VIP内容
基于文档的对话技术研究
专知会员服务
19+阅读 · 2022年2月20日
专知会员服务
34+阅读 · 2021年10月19日
专知会员服务
52+阅读 · 2021年8月29日
机器学习在信道建模中的应用综述
专知会员服务
27+阅读 · 2021年3月16日
【博士论文】解耦合的类脑计算系统栈设计
专知会员服务
30+阅读 · 2020年12月14日
少即是多?非参数语言模型,68页ppt
专知会员服务
23+阅读 · 2020年11月22日
专知会员服务
31+阅读 · 2020年10月13日
相关资讯
语音识别的快速纠错模型FastCorrect系列来了!
微软研究院AI头条
1+阅读 · 2022年3月22日
浅谈分辨率对模型影响以及训练方法
极市平台
0+阅读 · 2022年1月19日
已删除
将门创投
12+阅读 · 2019年7月1日
深度学习之视频图像压缩
论智
13+阅读 · 2018年6月15日
干货|全景视频拼接的关键技术分析
全球人工智能
13+阅读 · 2017年7月15日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员