Blur is an image degradation that is difficult to remove. Invariants with respect to blur offer an alternative way of a~description and recognition of blurred images without any deblurring. In this paper, we present an original unified theory of blur invariants. Unlike all previous attempts, the new theory does not require any prior knowledge of the blur type. The invariants are constructed in the Fourier domain by means of orthogonal projection operators and moment expansion is used for efficient and stable computation. It is shown that all blur invariants published earlier are just particular cases of this approach. Experimental comparison to concurrent approaches shows the advantages of the proposed theory.
翻译:模糊是一个难以去除的图像降解。 模糊的变量提供了一种在不作任何分流的情况下对模糊图像进行~描述和识别的替代方法。 在本文中,我们提出了一个原始的模糊变量统一理论。 与以往所有尝试不同, 新理论并不要求事先知道模糊类型。 异差是通过正方形投影操作器在 Fourier 域中构造的, 并且时间扩展用于高效和稳定的计算。 已经显示, 先前公布的所有模糊变量只是这种方法的特例。 与同时使用的方法的实验性比较显示了拟议理论的优点 。