Rotation invariance is an important requirement for the analysis of 3D point clouds. In this paper, we present a learnable descriptor for rotation- and reflection-invariant 3D point cloud classification based on recently introduced steerable 3D spherical neurons and vector neurons. Specifically, we show that the two approaches are compatible, and we show how to apply steerable neurons in an end-to-end method for the first time. In our approach, we perform TetraTransform -- which lifts the 3D input to an equivariant 4D representation, constructed by the steerable neurons -- and extract deeper rotation-equivariant features using vector neurons, subsequently computing pair-wise O(3)-invariant inner products of these features. This integration of the TetraTransform into the VN-DGCNN framework, termed TetraSphere, is used to classify synthetic and real-world data in arbitrary orientations. Taking only 3D coordinates as input, TetraSphere sets a new state-of-the-art classification performance on randomly rotated objects of the hardest subset of ScanObjectNN, even when trained on data without additional rotation augmentation. Our results reveal the practical value of spherical decision surfaces for learning in 3D Euclidean space.
翻译:旋转变换是分析 3D 点云的一个重要要求。 在本文中, 我们根据最近引入的可控 3D 3D 球形神经元和矢量神经元, 为旋转和反射变换 3D 点云值分类提供了一个可学习的描述符。 具体地说, 我们显示这两种方法是兼容的, 我们第一次展示了如何在端到端方法中应用可控的神经元。 在我们的方法中, 我们执行Tetra Transform -- 将 3D 输入提升为等值 4D 表示法 -- 由可控神经建立, 并用矢量神经元来提取更深的旋转- 3D 点云值。 将Tetratratratraforform 纳入VN- DGCNN 框架, 称为 TettraSphere, 用于任意方向对合成和真实世界数据进行分类。 仅以 3D 坐标作为输入, TettraSphere 设置一个新的状态分类功能, 用于随机旋转的 4Dreaudistrational- Explain Explain Explain Explain Explain 3- Explain Explain Exportmentalmentalmentalus 3- slationalus slational 3- slational Explus.</s>