In Bayesian peer-to-peer decentralized data fusion, the underlying distributions held locally by autonomous agents are frequently assumed to be over the same set of variables (homogeneous). This requires each agent to process and communicate the full global joint distribution, and thus leads to high computation and communication costs irrespective of relevancy to specific local objectives. This work formulates and studies heterogeneous decentralized fusion problems, defined as the set of problems in which either the communicated or the processed distributions describe different, but overlapping, random states of interest that are subsets of a larger full global joint state. We exploit the conditional independence structure of such problems and provide a rigorous derivation of novel exact and approximate conditionally factorized heterogeneous fusion rules. We further develop a new version of the homogeneous Channel Filter algorithm to enable conservative heterogeneous fusion for smoothing and filtering scenarios in dynamic problems. Numerical examples show more than $99.5\%$ potential communication reduction for heterogeneous channel filter fusion, and a multi-target tracking simulation shows that these methods provide consistent estimates while remaining computationally scalable.
翻译:在Bayesian同侪分散化的数据聚合中,自主代理商在当地持有的基本分布通常被假定是同一一组变量(同源性)的,这就要求每个代理商处理和传送全球共同分布,从而导致计算和交流费用高昂,而不论与具体的地方目标是否相关。这项工作提出和研究分散化的多种问题,其定义是:传播或处理的分布所描述的不同但相互重叠的随机利益状态是更大的全球完整联合状态的子集。我们利用这些问题的有条件独立结构,对新颖的精确和近似具有附带因素的混杂混杂规则进行严格推断。我们进一步开发了单一通道过滤法的新版本,以便能够为动态问题的平滑和过滤情景进行保守的混合。数字实例显示,在混杂渠道过滤中,可能减少通信的费用超过99.5美元,并且多目标跟踪模拟显示,这些方法提供了一致的估计,同时仍然可以计算。