We study the local complexity landscape of locally checkable labeling (LCL) problems on constant-degree graphs with a focus on complexities below $\log^* n$. Our contribution is threefold: Our main contribution is that we complete the classification of the complexity landscape of LCL problems on trees in the LOCAL model, by proving that every LCL problem with local complexity $o(\log^* n)$ has actually complexity $O(1)$. This result improves upon the previous speedup result from $o(\log \log^* n)$ to $O(1)$ by [Chang, Pettie, FOCS 2017]. In the related LCA and Volume models [Alon, Rubinfeld, Vardi, Xie, SODA 2012, Rubinfeld, Tamir, Vardi, Xie, 2011, Rosenbaum, Suomela, PODC 2020], we prove the same speedup from $o(\log^* n)$ to $O(1)$ for all bounded degree graphs. Similarly, we complete the classification of the LOCAL complexity landscape of oriented $d$-dimensional grids by proving that any LCL problem with local complexity $o(\log^* n)$ has actually complexity $O(1)$. This improves upon the previous speed-up from $o(\sqrt[d]{\log^* n})$ by Suomela in [Chang, Pettie, FOCS 2017].


翻译:我们研究当地可核对标签(LLL)问题对当地复杂地貌的复杂地貌,重点是复杂地低于美元。我们的贡献有三重:我们的主要贡献是,我们通过证明当地复杂地产的每个LLCL问题实际上都复杂地美元(1美元),从而完成LOCAL模式中树木LLL问题复杂地貌的分类,证明当地复杂地产美元(LLLL)问题的每个问题实际上都比较复杂,从美元(log n)到美元(美元)到美元(1美元),比以往的加速结果有所改善。同样,我们在相关的LCA和量模型中[Alon,Rubinfeld, Vardi, Xie, SODA, 2012, Rubinfeld, Tamir, Vardi, Xie, Xie, 2011, Rosenbumbum, Suomela, PoDC 2020],我们证明所有约束地籍图都比美元(美元)到美元(1美元(美元)的2017美元(FOCL)的加速地段。同样,我们完成了LCLCLCL复杂地(美元)从以往的复杂地(美元)改进了美元/美元(美元)的当地复杂地块-美元(美元)问题。

0
下载
关闭预览

相关内容

IEEE计算机科学基础研讨会(FOCS)是由IEEE计算机学会计算数学基础技术委员会(TCMF)主办的旗舰会议,涵盖了广泛的理论计算机科学。它每年秋季举行,并与每年春季举行的由ACM SIGACT赞助的姊妹会议——计算理论年度研讨会(STOC)配对。官网链接:http://ieee-focs.org/
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月18日
Arxiv
0+阅读 · 2022年4月15日
Arxiv
0+阅读 · 2022年4月14日
VIP会员
相关资讯
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员