We study the local complexity landscape of locally checkable labeling (LCL) problems on constant-degree graphs with a focus on complexities below $\log^* n$. Our contribution is threefold: Our main contribution is that we complete the classification of the complexity landscape of LCL problems on trees in the LOCAL model, by proving that every LCL problem with local complexity $o(\log^* n)$ has actually complexity $O(1)$. This result improves upon the previous speedup result from $o(\log \log^* n)$ to $O(1)$ by [Chang, Pettie, FOCS 2017]. In the related LCA and Volume models [Alon, Rubinfeld, Vardi, Xie, SODA 2012, Rubinfeld, Tamir, Vardi, Xie, 2011, Rosenbaum, Suomela, PODC 2020], we prove the same speedup from $o(\log^* n)$ to $O(1)$ for all bounded degree graphs. Similarly, we complete the classification of the LOCAL complexity landscape of oriented $d$-dimensional grids by proving that any LCL problem with local complexity $o(\log^* n)$ has actually complexity $O(1)$. This improves upon the previous speed-up from $o(\sqrt[d]{\log^* n})$ by Suomela in [Chang, Pettie, FOCS 2017].
翻译:我们研究当地可核对标签(LLL)问题对当地复杂地貌的复杂地貌,重点是复杂地低于美元。我们的贡献有三重:我们的主要贡献是,我们通过证明当地复杂地产的每个LLCL问题实际上都复杂地美元(1美元),从而完成LOCAL模式中树木LLL问题复杂地貌的分类,证明当地复杂地产美元(LLLL)问题的每个问题实际上都比较复杂,从美元(log n)到美元(美元)到美元(1美元),比以往的加速结果有所改善。同样,我们在相关的LCA和量模型中[Alon,Rubinfeld, Vardi, Xie, SODA, 2012, Rubinfeld, Tamir, Vardi, Xie, Xie, 2011, Rosenbumbum, Suomela, PoDC 2020],我们证明所有约束地籍图都比美元(美元)到美元(1美元(美元)的2017美元(FOCL)的加速地段。同样,我们完成了LCLCLCL复杂地(美元)从以往的复杂地(美元)改进了美元/美元(美元)的当地复杂地块-美元(美元)问题。