Selecting the most suitable algorithm and determining its hyperparameters for a given optimization problem is a challenging task. Accurately predicting how well a certain algorithm could solve the problem is hence desirable. Recent studies in single-objective numerical optimization show that supervised machine learning methods can predict algorithm performance using landscape features extracted from the problem instances. Existing approaches typically treat the algorithms as black-boxes, without consideration of their characteristics. To investigate in this work if a selection of landscape features that depends on algorithms properties could further improve regression accuracy, we regard the modular CMA-ES framework and estimate how much each landscape feature contributes to the best algorithm performance regression models. Exploratory data analysis performed on this data indicate that the set of most relevant features does not depend on the configuration of individual modules, but the influence that these features have on regression accuracy does. In addition, we have shown that by using classifiers that take the features relevance on the model accuracy, we are able to predict the status of individual modules in the CMA-ES configurations.
翻译:选择最合适的算法并确定其用于特定优化问题的超参数是一项具有挑战性的任务。 准确地预测某种算法能解决问题的好坏是可取的。 最近对单一客观数字优化的研究表明, 受监督的机器学习方法能够利用从问题实例中提取的景观特征预测算法的性能。 现有方法一般将算法作为黑盒子处理, 而不考虑其特性。 如果选择取决于算法特性的景观特征可以进一步提高回归精确度, 我们在此工作中调查, 我们考虑模块 CMA- ES 框架, 并估计每个景观特征对最佳算法性回归模型的贡献程度。 对这些数据进行的探索性数据分析表明, 最相关的特征组并不取决于单个模块的配置, 但这些特征对回归精确性的影响。 此外, 我们显示, 通过使用与模型精确性能相关的特性的分类器, 我们能够预测 CMA- ES 配置中单个模块的状况 。