Machine learning and neural networks are now ubiquitous in sonar perception, but it lags behind the computer vision field due to the lack of data and pre-trained models specifically for sonar images. In this paper we present the Marine Debris Turntable dataset and produce pre-trained neural networks trained on this dataset, meant to fill the gap of missing pre-trained models for sonar images. We train Resnet 20, MobileNets, DenseNet121, SqueezeNet, MiniXception, and an Autoencoder, over several input image sizes, from 32 x 32 to 96 x 96, on the Marine Debris turntable dataset. We evaluate these models using transfer learning for low-shot classification in the Marine Debris Watertank and another dataset captured using a Gemini 720i sonar. Our results show that in both datasets the pre-trained models produce good features that allow good classification accuracy with low samples (10-30 samples per class). The Gemini dataset validates that the features transfer to other kinds of sonar sensors. We expect that the community benefits from the public release of our pre-trained models and the turntable dataset.
翻译:机器学习和神经网络现在在声纳感知方面无处不在,但由于缺少专门用于声纳图像的数据和预先培训的模型,它们落后于计算机视觉领域。在本文中,我们介绍了海洋废弃物转基因数据集,并制作了经过培训的关于该数据集的培训前神经网络,目的是填补声纳图像预培训模型缺失的空白。我们培训Resnet 20、 MovedNets、 DenseNet 121、SquezeNet、MiniXception和Autoencoder,在海洋废弃物转基因数据集上,其输入图像尺寸为32x32至96x96。我们利用海洋废弃物转基因数据集中的低射分级转移学习来评估这些模型,并利用Gemini 720i sonar采集的另一个数据集来评估这些模型。我们的结果显示,在这两个数据集中,经过培训的模型产生良好的特征,使得低样品(每类10-30个样本)的分类精确度良好。Gemininar数据集证实,这些特征转移到其他类型的声纳传感器。我们期望通过公开发布我们经过培训的模型和转成型数据集给社区带来好处。