Person re-identification plays an important role in realistic video surveillance with increasing demand for public safety. In this paper, we propose a novel framework with rules of updating images for person re-identification in real-world surveillance system. First, Image Pool is generated by using mean-shift tracking method to automatically select video frame fragments of the target person. Second, features extracted from Image Pool by convolutional network work together to re-rank original ranking list of the main image and matching results will be generated. In addition, updating rules are designed for replacing images in Image Pool when a new image satiating with our updating critical formula in video system. These rules fall into two categories: if the new image is from the same camera as the previous updated image, it will replace one of assist images; otherwise, it will replace the main image directly. Experiments are conduced on Market-1501, iLIDS-VID and PRID-2011 and our ITSD datasets to validate that our framework outperforms on rank-1 accuracy and mAP for person re-identification. Furthermore, the update ability of our framework provides consistently remarkable accuracy rate in real-world surveillance system.


翻译:个人再身份在现实的视频监控中起着重要作用,公众安全需求不断增加。 在本文中,我们提出一个新的框架,规定在现实世界的监控系统中更新个人再身份的图像。 首先,图像库是通过使用中度移动跟踪方法生成的,以自动选择目标人的视频框架碎片。 其次,通过连动网络从图像库中提取的特征将共同生成主要图像和匹配结果的原始排名列表的重新排序。 此外,在图像库中设计了更新规则,以取代图像库中图像中的新图像,以适应视频系统中我们更新的关键公式。这些规则分为两类:如果新图像来自与前一次更新图像相同的相机,它将取代一个辅助图像;否则,它将直接取代主要图像。在市场1501、iLIDS-VID和PRID-2011以及我们的ITSD数据集上进行了实验,以证实我们的框架在级-1准确度上超过了标准,而人再识别的 mAP 。此外,我们框架的更新能力为现实世界的监控系统提供了一贯显著的精确率。

6
下载
关闭预览

相关内容

机器学习系统设计系统评估标准
元学习(meta learning) 最新进展综述论文
专知会员服务
279+阅读 · 2020年5月8日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
开源书:PyTorch深度学习起步
专知会员服务
51+阅读 · 2019年10月11日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
PTGAN for Person Re-Identification
统计学习与视觉计算组
4+阅读 · 2018年9月10日
计算机视觉的不同任务
专知
5+阅读 · 2018年8月27日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Adversarial Metric Attack for Person Re-identification
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
PTGAN for Person Re-Identification
统计学习与视觉计算组
4+阅读 · 2018年9月10日
计算机视觉的不同任务
专知
5+阅读 · 2018年8月27日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员