A two-dimensional inviscid incompressible fluid is governed by simple rules. Yet, to characterise its long-time behaviour is a knotty problem. The fluid evolves according to Euler's equations: a non-linear Hamiltonian system with infinitely many conservation laws. In both experiments and numerical simulations, coherent vortex structures, or blobs, emerge after an initial stage. These formations dominate the large-scale dynamics, but small scales also persist. Kraichnan describes in his classical work a forward cascade of enstrophy into smaller scales, and a backward cascade of energy into larger scales. Previous attempts to model Kraichnan's double cascade use filtering techniques that enforce separation from the outset. Here we show that Euler's equations posses an intrinsic, canonical splitting of the vorticity function. The splitting is remarkable in four ways: (i) it is defined solely via the Poisson bracket and the Hamiltonian, (ii) it characterises steady flows, (iii) without imposition it yields a separation of scales, enabling the dynamics behind Kraichnan's qualitative description, and (iv) it accounts for the "broken line" in the power law for the energy spectrum, observed in both experiments and numerical simulations. The splitting originates from Zeitlin's truncated model of Euler's equations in combination with a standard quantum-tool: the spectral decomposition of Hermitian matrices. In addition to theoretical insight, the scale separation dynamics could be used for stochastic model reduction, where small scales are modelled by multiplicative noise.
翻译:简单的规则管理着一个二维的、 深视的、 无法压缩的流体。 然而, 克拉希南在其古典工作中描述其长期行为的特征是一个棘手的问题。 流体根据尤莱尔的方程式演变: 一个非线性汉密尔顿系统, 其保护法极为繁多。 在实验和数字模拟中, 这些结构在初始阶段后出现, 一致的旋涡结构, 或浮质。 这些结构在四个方面是显著的:( 一) 仅仅通过小流体和汉密尔顿组合来定义它。 克拉希南在其传统工作中描述一个前向前的直线级螺旋变小, 以及向后向后的能量递增到更大的比例。 以前, 模拟克拉希南的双级级螺旋会使用过滤技术来实施分解。 这里我们显示, Eulner的等量等式的等式计算具有内在的、 分流的分解。 分解法的分数级模型中, 缩法的分级的分级计算 。 (i) 由小流到缩缩缩缩缩缩, 。