Sequential algorithms such as sequential importance sampling (SIS) and sequential Monte Carlo (SMC) have proven fundamental in Bayesian inference for models not admitting a readily available likelihood function. For approximate Bayesian computation (ABC), SMC-ABC is the state-of-art sampler. However, since the ABC paradigm is intrinsically wasteful, sequential ABC schemes can benefit from well-targeted proposal samplers that efficiently avoid improbable parameter regions. We contribute to the ABC modeller's toolbox with novel proposal samplers that are conditional to summary statistics of the data. In a sense, the proposed parameters are "guided" to rapidly reach regions of the posterior surface that are compatible with the observed data. This speeds up the convergence of these sequential samplers, thus reducing the computational effort, while preserving the accuracy in the inference. We provide a variety of guided samplers for both SIS-ABC and SMC-ABC easing inference for challenging case-studies, including multimodal posteriors, highly correlated posteriors, hierarchical models with high-dimensional summary statistics (180 summaries used to infer 21 parameters) and a simulation study of cell movements (using more than 400 summaries).
翻译:连续重要取样(SIS)和相继蒙特卡洛(SMC)等序列算法已证明在巴伊西亚推断模型不接受现成可能性功能模型的贝伊西亚推断中具有根本意义。对于近似巴伊西亚计算(ABC)而言,SMC-ABC是最先进的采样者。然而,由于ABC范式本质上是浪费的,序列ABC计划可以受益于目标明确的建议采样器,从而有效避免不易交错的参数区域。我们向ABC示范员提供工具箱提供以数据汇总统计为条件的新建议采样器。从某种意义上说,拟议的参数是“制导”的,以迅速到达符合所观察到的数据的远洋表面区域。这加快了这些相近采样器的趋同速度,从而减少了计算努力,同时保持了推断的准确性。我们为SIS-ABC和SMC-ABC提供了各种指导采样器,以挑战性案例研究的推断力,包括多式后方、高度相近的后级模型、具有高度摘要的等级模型,以及高度摘要的模型,比21个模拟的模型(使用摘要的18)。