The ubiquity and rate of collection of cardiac signals produce large, unlabelled datasets. Active learning (AL) can exploit such datasets by incorporating human annotators (oracles) to improve generalization performance. However, the over-reliance of existing algorithms on oracles continues to burden physicians. To minimize this burden, we propose SoCal, a consistency-based AL framework that dynamically determines whether to request a label from an oracle or to generate a pseudo-label instead. We show that our framework decreases the labelling burden while maintaining strong performance, even in the presence of a noisy oracle.
翻译:收集心脏信号的无处不在和速度之高,会产生大量没有标签的数据集。积极学习(AL)可以利用这类数据集,将人文告示员(神器)纳入其中,以提高一般性能。然而,现有算法对神器的过度依赖继续给医生带来负担。为了尽可能减轻这一负担,我们提议SoCal,一个基于一致性的AL框架,它能动态地决定是要求从一个神器上贴标签,还是制作一个假标签。我们表明,我们的框架在保持强大的性能的同时,降低了标签负担,即使存在一个吵闹的神器。