The ubiquity and rate of collection of cardiac signals produce large, unlabelled datasets. Active learning (AL) can exploit such datasets by incorporating human annotators (oracles) to improve generalization performance. However, the over-reliance of existing algorithms on oracles continues to burden physicians. To minimize this burden, we propose SoCal, a consistency-based AL framework that dynamically determines whether to request a label from an oracle or to generate a pseudo-label instead. We show that our framework decreases the labelling burden while maintaining strong performance, even in the presence of a noisy oracle.


翻译:收集心脏信号的无处不在和速度之高,会产生大量没有标签的数据集。积极学习(AL)可以利用这类数据集,将人文告示员(神器)纳入其中,以提高一般性能。然而,现有算法对神器的过度依赖继续给医生带来负担。为了尽可能减轻这一负担,我们提议SoCal,一个基于一致性的AL框架,它能动态地决定是要求从一个神器上贴标签,还是制作一个假标签。我们表明,我们的框架在保持强大的性能的同时,降低了标签负担,即使存在一个吵闹的神器。

0
下载
关闭预览

相关内容

甲骨文公司,全称甲骨文股份有限公司(甲骨文软件系统有限公司),是全球最大的企业级软件公司,总部位于美国加利福尼亚州的红木滩。1989年正式进入中国市场。2013年,甲骨文已超越 IBM ,成为继 Microsoft 后全球第二大软件公司。
专知会员服务
52+阅读 · 2020年9月7日
因果图,Causal Graphs,52页ppt
专知会员服务
247+阅读 · 2020年4月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年1月16日
Risk-Aware Active Inverse Reinforcement Learning
Arxiv
7+阅读 · 2019年1月8日
Multi-task Deep Reinforcement Learning with PopArt
Arxiv
4+阅读 · 2018年9月12日
Arxiv
9+阅读 · 2018年3月28日
VIP会员
相关VIP内容
专知会员服务
52+阅读 · 2020年9月7日
因果图,Causal Graphs,52页ppt
专知会员服务
247+阅读 · 2020年4月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
相关资讯
Top
微信扫码咨询专知VIP会员