Accurate moving object segmentation is an essential task for autonomous driving. It can provide effective information for many downstream tasks, such as collision avoidance, path planning, and static map construction. How to effectively exploit the spatial-temporal information is a critical question for 3D LiDAR moving object segmentation (LiDAR-MOS). In this work, we propose a novel deep neural network exploiting both spatial-temporal information and different representation modalities of LiDAR scans to improve LiDAR-MOS performance. Specifically, we first use a range image-based dual-branch structure to separately deal with spatial and temporal information that can be obtained from sequential LiDAR scans, and later combine them using motion-guided attention modules. We also use a point refinement module via 3D sparse convolution to fuse the information from both LiDAR range image and point cloud representations and reduce the artifacts on the borders of the objects. We verify the effectiveness of our proposed approach on the LiDAR-MOS benchmark of SemanticKITTI. Our method outperforms the state-of-the-art methods significantly in terms of LiDAR-MOS IoU. Benefiting from the devised coarse-to-fine architecture, our method operates online at sensor frame rate. The implementation of our method is available as open source at: https://github.com/haomo-ai/MotionSeg3D.
翻译:精确移动对象分割是自主驱动的一项基本任务。 它可以为许多下游任务提供有效信息, 如避免碰撞、路径规划和静态地图构造。 如何有效利用空间时空信息是 3D LiDAR 移动对象分割( LiDAR- MOS) 的关键问题。 在这项工作中, 我们提议建立一个新型的深神经网络, 利用空间- 时间信息以及LiDAR 扫描的不同表达方式来改进LiDAR- MOS 的性能。 具体地说, 我们首先使用一个基于范围图像的双管结构, 单独处理从连续的LiDAR 扫描中获得的空间和时间信息, 然后再使用运动引导的注意模块将这些信息结合起来。 我们还使用一个通过 3D 分散的微调组合模块, 将来自LiDAR 范围图像和点云表显示的信息结合起来, 并减少物体边界上的文物。 我们核查了我们关于LiDAR- MOS 的开放基准的拟议方法的有效性。 我们的方法超越了从连续的LDAR- 方法的状态-, 在可操作的IMAR- 格式上, 我们的IMAR- 格式的S- 的系统- 格式的系统- 格式的系统- 。