Although convolutional representation of multiscale sparse tensor demonstrated its superior efficiency to accurately model the occupancy probability for the compression of geometry component of dense object point clouds, its capacity for representing sparse LiDAR point cloud geometry (PCG) was largely limited. This is because 1) fixed receptive field of the convolution cannot characterize extremely and unevenly distributed sparse LiDAR points very well; and 2) pretrained convolutions with fixed weights are insufficient to dynamically capture information conditioned on the input. This work therefore suggests the neighborhood point attention (NPA) to tackle them, where we first use k nearest neighbors (kNN) to construct adaptive local neighborhood; and then leverage the self-attention mechanism to dynamically aggregate information within this neighborhood. Such NPA is devised as a NPAFormer to best exploit cross-scale and same-scale correlations for geometric occupancy probability estimation. Compared with the anchor using standardized G-PCC, our method provides >17% BD-rate gains for lossy compression, and >14% bitrate reduction for lossless scenario using popular LiDAR point clouds in SemanticKITTI and Ford datasets. Compared with the state-of-the-art (SOTA) solution using attention optimized octree coding method, our approach requires much less decoding runtime with about 640 times speedup on average, while still presenting better compression efficiency.


翻译:虽然多层次稀散的沙粒的共变代表性展示了它的更高效率,以精确地模拟压缩密集天点云几何组成部分的占用概率,但其代表稀有的利达雷达点云度几何测量(PCG)的能力基本有限,这是因为:(1) 固定的共变可接受场不能很好地描述极端和分布不均的稀少的利达雷达点点;(2) 固定重量的先期演算不足以动态地捕捉以输入为条件的信息。 因此,这项工作表明,要解决它们,邻里点注意(NPA),我们首先利用最近的邻里点(kNNN)来构建适应性的本地邻居(kNN),然后利用自我注意机制来动态集成这一邻里点的信息。 这是因为,这种《新计划》的设计是《新计划》,以最佳的跨规模和相同规模的相对关系来估计几度占用概率概率概率。 与使用标准化G-PCC的锚标相比,我们的方法为损失压缩提供了超过17%的BD节增率, 和超过14%的位数率,我们首先使用Smantitict-cal-cal-stal-degration-degration 方法,同时要求我们的平均同步对6-deal-tradest-dest-detradestral-de-de-de-de-destrutal-stol-de-de-stal-de-de-degal laction-de-de-stol-degol-deg) 方法进行更多的注意。

0
下载
关闭预览

相关内容

【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
117+阅读 · 2022年4月21日
专知会员服务
44+阅读 · 2020年10月31日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年10月6日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员