Although convolutional representation of multiscale sparse tensor demonstrated its superior efficiency to accurately model the occupancy probability for the compression of geometry component of dense object point clouds, its capacity for representing sparse LiDAR point cloud geometry (PCG) was largely limited. This is because 1) fixed receptive field of the convolution cannot characterize extremely and unevenly distributed sparse LiDAR points very well; and 2) pretrained convolutions with fixed weights are insufficient to dynamically capture information conditioned on the input. This work therefore suggests the neighborhood point attention (NPA) to tackle them, where we first use k nearest neighbors (kNN) to construct adaptive local neighborhood; and then leverage the self-attention mechanism to dynamically aggregate information within this neighborhood. Such NPA is devised as a NPAFormer to best exploit cross-scale and same-scale correlations for geometric occupancy probability estimation. Compared with the anchor using standardized G-PCC, our method provides >17% BD-rate gains for lossy compression, and >14% bitrate reduction for lossless scenario using popular LiDAR point clouds in SemanticKITTI and Ford datasets. Compared with the state-of-the-art (SOTA) solution using attention optimized octree coding method, our approach requires much less decoding runtime with about 640 times speedup on average, while still presenting better compression efficiency.
翻译:虽然多层次稀散的沙粒的共变代表性展示了它的更高效率,以精确地模拟压缩密集天点云几何组成部分的占用概率,但其代表稀有的利达雷达点云度几何测量(PCG)的能力基本有限,这是因为:(1) 固定的共变可接受场不能很好地描述极端和分布不均的稀少的利达雷达点点;(2) 固定重量的先期演算不足以动态地捕捉以输入为条件的信息。 因此,这项工作表明,要解决它们,邻里点注意(NPA),我们首先利用最近的邻里点(kNNN)来构建适应性的本地邻居(kNN),然后利用自我注意机制来动态集成这一邻里点的信息。 这是因为,这种《新计划》的设计是《新计划》,以最佳的跨规模和相同规模的相对关系来估计几度占用概率概率概率。 与使用标准化G-PCC的锚标相比,我们的方法为损失压缩提供了超过17%的BD节增率, 和超过14%的位数率,我们首先使用Smantitict-cal-cal-stal-degration-degration 方法,同时要求我们的平均同步对6-deal-tradest-dest-detradestral-de-de-de-de-destrutal-stol-de-de-stal-de-de-degal laction-de-de-stol-degol-deg) 方法进行更多的注意。