Many online action prediction models observe complete frames to locate and attend to informative subregions in the frames called glimpses and recognize an ongoing action based on global and local information. However, in applications with constrained resources, an agent may not be able to observe the complete frame, yet must still locate useful glimpses to predict an incomplete action based on local information only. In this paper, we develop Glimpse Transformers (GliTr), which observe only narrow glimpses at all times, thus predicting an ongoing action and the following most informative glimpse location based on the partial spatiotemporal information collected so far. In the absence of a ground truth for the optimal glimpse locations for action recognition, we train GliTr using a novel spatiotemporal consistency objective: We require GliTr to attend to the glimpses with features similar to the corresponding complete frames (i.e. spatial consistency) and the resultant class logits at time $t$ equivalent to the ones predicted using whole frames up to $t$ (i.e. temporal consistency). Inclusion of our proposed consistency objective yields ~10% higher accuracy on the Something-Something-v2 (SSv2) dataset than the baseline cross-entropy objective. Overall, despite observing only ~33% of the total area per frame, GliTr achieves 53.02% and 93.91% accuracy on the SSv2 and Jester datasets, respectively.
翻译:许多在线动作预测模型观察完整的帧以定位并关注名为瞥见的信息子区域,并基于全局和本地信息识别正在进行的动作。然而,在资源受限的应用程序中,代理可能无法观察完整的帧,但仍必须定位有用的瞥见以仅基于本地信息预测不完整的动作。在本文中,我们开发了 GliTr,它始终仅观察窄瞥见,因此可以根据收集到的局部时空信息预测正在进行的动作和接下来最有用的瞥见位置。在没有用于动作识别的最佳瞥见位置的基本事实的情况下,我们使用新的时空一致性目标训练 GliTr:我们要求 GliTr关注特征与相应的完整帧类似的瞥见(即空间一致性),并且预测的类别 logits 在时间 $t$ 上等效于使用截至 $t$ 的整个帧预测的类别 logits (即时间一致性)。包含提出的一致性目标的训练可使 Something-Something-v2(SSv2)数据集上的准确性比基线交叉熵目标高约10%。总体而言,尽管仅观察每帧总面积的约33%,GliTr在SSv2和Jester数据集上分别达到53.02%和93.91%的准确性。