Semiparametric accelerated failure time (AFT) models are a useful alternative to Cox proportional hazards models, especially when the assumption of constant hazard ratios is untenable. However, rank-based criteria for fitting AFT models are often non-differentiable, which poses a computational challenge in high-dimensional settings. In this article, we propose a new alternating direction method of multipliers algorithm for fitting semiparametric AFT models by minimizing a penalized rank-based loss function. Our algorithm scales well in both the number of subjects and number of predictors; and can easily accommodate a wide range of popular penalties. To improve the selection of tuning parameters, we propose a new criterion which avoids some common problems in cross-validation with censored responses. Through extensive simulation studies, we show that our algorithm and software is much faster than existing methods (which can only be applied to special cases), and we show that estimators which minimize a penalized rank-based criterion often outperform alternative estimators which minimize penalized weighted least squares criteria. Application to nine cancer datasets further demonstrates that rank-based estimators of semiparametric AFT models are competitive with estimators assuming proportional hazards model in high-dimensional settings, whereas weighted least squares estimators are often not. A software package implementing the algorithm, along with a set of auxiliary functions, is available for download at github.com/ajmolstad/penAFT.


翻译:半偏差加速故障时间模型(AFT)是Cox成比例危害模型的有用替代物,特别是在假设常态危险比率是站不住脚的情况下。然而,基于等级的AFT模型安装标准往往无法区分,这在高维环境中构成一个计算挑战。在本条中,我们提出一种新的交替的乘数算法方法,以通过尽量减少一个受罚的按级损失函数来安装半对称 AFT模型。我们的算法尺度在主题和预测器数量上都非常优于各种预测器;而且很容易适应广泛的流行惩罚。为了改进调试参数的选择,我们提出了一个新的标准,避免了与受审查的反应进行交叉校准的一些常见问题。通过广泛的模拟研究,我们表明我们的算法和软件比现有方法(只能适用于特殊情况)要快得多。我们表明,尽可能降低受罚的按级标准定得分数的标准往往优于能尽量减少受罚的加权最低正方位标准;对九种癌症数据集的应用进一步表明,基于等级的AFTFT模型的定型估量模型/定位模型往往与可操作的Astimaim Astialim Stabitaimal Aslistal 和可与高级的定型的定型的定型的定型的固定的固定的固定的固定的固定的固定的固定的固定的固定的固定的固定的固定的AFFFTFTA-commasmasmasmasmasmasmatial,在与可与可操作的固定的计算。

0
下载
关闭预览

相关内容

专知会员服务
41+阅读 · 2021年4月2日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
MIT新书《强化学习与最优控制》
专知会员服务
276+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
已删除
将门创投
4+阅读 · 2019年4月1日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】卷积神经网络类间不平衡问题系统研究
机器学习研究会
6+阅读 · 2017年10月18日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
3+阅读 · 2018年6月18日
Arxiv
4+阅读 · 2018年1月15日
Arxiv
3+阅读 · 2017年12月14日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
已删除
将门创投
4+阅读 · 2019年4月1日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】卷积神经网络类间不平衡问题系统研究
机器学习研究会
6+阅读 · 2017年10月18日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员