A new robust stochastic volatility (SV) model having Student-t marginals is proposed. Our process is defined through a linear normal regression model driven by a latent gamma process that controls temporal dependence. This gamma process is strategically chosen to enable us to find an explicit expression for the pairwise joint density function of the Student-t response process. With this at hand, we propose a composite likelihood (CL) based inference for our model, which can be straightforwardly implemented with a low computational cost. This is a remarkable feature of our Student-t SV process over existing SV models in the literature that involve computationally heavy algorithms for estimating parameters. Aiming at a precise estimation of the parameters related to the latent process, we propose a CL Expectation-Maximization algorithm and discuss a bootstrap approach to obtain standard errors. The finite-sample performance of our composite likelihood methods is assessed through Monte Carlo simulations. The methodology is motivated by an empirical application in the financial market. We analyze the relationship, across multiple time periods, between various US sector Exchange-Traded Funds returns and individual companies' stock price returns based on our novel Student-t model. This relationship is further utilized in selecting optimal financial portfolios.


翻译:提出了具有学生- 边际值的新的稳健的随机波动模型。 我们的进程是通过由潜伏伽马进程驱动的直线正常回归模型来定义的, 以控制时间依赖性。 这个伽马进程是战略选择的, 以使我们能够为学生- 边响应进程的对称联合密度功能找到清晰的表达方式。 我们手头为我们的模型提出了一个基于复合概率( CL) 的复合概率( CL) 推论, 可以用低的计算成本直接实施。 这是我们学生- t SV 进程与文献中现有的SV 模型的一个显著特征, 该模型涉及估算参数的计算超重的算法。 为了精确估计与潜伏过程有关的参数, 我们提议了一个 CL 期待- 最大化算法, 并讨论一个用来获取标准错误的陷阱法 。 我们复合概率方法的有限性抽样性能是通过蒙特卡洛 模拟来评估的。 这种方法是金融市场的经验应用所激发的。 我们分析了多种时期的美国部门交易所- 交易基金收益和个别公司根据我们的新学生- 最佳组合选择的股票价格回报之间的关系。 使用这个关系是 。 使用这个关系。

0
下载
关闭预览

相关内容

Processing 是一门开源编程语言和与之配套的集成开发环境(IDE)的名称。Processing 在电子艺术和视觉设计社区被用来教授编程基础,并运用于大量的新媒体和互动艺术作品中。
专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
52+阅读 · 2020年9月7日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
已删除
将门创投
5+阅读 · 2019年4月4日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年7月14日
Implicit Maximum Likelihood Estimation
Arxiv
7+阅读 · 2018年9月24日
Arxiv
6+阅读 · 2018年4月21日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
已删除
将门创投
5+阅读 · 2019年4月4日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员