We present GTT-Net, a supervised learning framework for the reconstruction of sparse dynamic 3D geometry. We build on a graph-theoretic formulation of the generalized trajectory triangulation problem, where non-concurrent multi-view imaging geometry is known but global image sequencing is not provided. GTT-Net learns pairwise affinities modeling the spatio-temporal relationships among our input observations and leverages them to determine 3D geometry estimates. Experiments reconstructing 3D motion-capture sequences show GTT-Net outperforms the state of the art in terms of accuracy and robustness. Within the context of articulated motion reconstruction, our proposed architecture is 1) able to learn and enforce semantic 3D motion priors for shared training and test domains, while being 2) able to generalize its performance across different training and test domains. Moreover, GTT-Net provides a computationally streamlined framework for trajectory triangulation with applications to multi-instance reconstruction and event segmentation.


翻译:我们提出GTT-Net,这是重建稀有动态 3D 几何的受监督的学习框架。 我们以通用轨迹三角学问题的图表理论配方为基础,即已知的多视成像不为人知,但却没有提供全球图像排序。 GTT-Net学习了我们投入观测之间spatio-时空关系模型的双向相似性,并利用它们来确定三维几何估计。 重建三维运动捕获序列的实验显示,GTT-Net在准确性和稳健性方面超越了最新水平。 在明确的运动重建的背景下,我们提议的架构能够 (1) 学习和执行用于共享培训和测试域的语义三维运动前期,同时2 能够将其不同培训和测试域的性能概括化。 此外, GTT-Net提供了一个计算简化的轨迹三角框架,用于多度重建和事件分解。

0
下载
关闭预览

相关内容

【干货书】机器人元素Elements of Robotics ,311页pdf
专知会员服务
34+阅读 · 2021年4月16日
【强化学习资源集合】Awesome Reinforcement Learning
专知会员服务
93+阅读 · 2019年12月23日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
【ACL2020放榜!】事件抽取、关系抽取、NER、Few-Shot 相关论文整理
深度学习自然语言处理
18+阅读 · 2020年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
NIPS 2018 | 轨迹卷积网络 TrajectoryNet
极市平台
8+阅读 · 2019年2月8日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【泡泡前沿追踪】跟踪SLAM前沿动态系列之IROS2018
泡泡机器人SLAM
29+阅读 · 2018年10月28日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
论文浅尝 | Learning with Noise: Supervised Relation Extraction
开放知识图谱
3+阅读 · 2018年1月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
13+阅读 · 2019年1月26日
VIP会员
相关资讯
【ACL2020放榜!】事件抽取、关系抽取、NER、Few-Shot 相关论文整理
深度学习自然语言处理
18+阅读 · 2020年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
NIPS 2018 | 轨迹卷积网络 TrajectoryNet
极市平台
8+阅读 · 2019年2月8日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【泡泡前沿追踪】跟踪SLAM前沿动态系列之IROS2018
泡泡机器人SLAM
29+阅读 · 2018年10月28日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
论文浅尝 | Learning with Noise: Supervised Relation Extraction
开放知识图谱
3+阅读 · 2018年1月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员