The Johnson-Lindenstrauss (JL) lemma is a cornerstone of dimensionality reduction in Euclidean space, but its applicability to non-Euclidean data has remained limited. This paper extends the JL lemma beyond Euclidean geometry to handle general dissimilarity matrices that are prevalent in real-world applications. We present two complementary approaches: First, we show the JL transform can be applied to vectors in pseudo-Euclidean space with signature $(p,q)$, providing theoretical guarantees that depend on the ratio of the $(p, q)$ norm and Euclidean norm of two vectors, measuring the deviation from Euclidean geometry. Second, we prove that any symmetric hollow dissimilarity matrix can be represented as a matrix of generalized power distances, with an additional parameter representing the uncertainty level within the data. In this representation, applying the JL transform yields multiplicative approximation with a controlled additive error term proportional to the deviation from Euclidean geometry. Our theoretical results provide fine-grained performance analysis based on the degree to which the input data deviates from Euclidean geometry, making practical and meaningful reduction in dimensionality accessible to a wider class of data. We validate our approaches on both synthetic and real-world datasets, demonstrating the effectiveness of extending the JL lemma to non-Euclidean settings.


翻译:Johnson-Lindenstrauss (JL) 引理是欧几里得空间中降维的基石,但其对非欧几里得数据的适用性一直有限。本文将 JL 引理推广到欧几里得几何之外,以处理现实应用中普遍存在的一般性相异矩阵。我们提出了两种互补的方法:首先,我们证明 JL 变换可以应用于具有 $(p,q)$ 符号的伪欧几里得空间中的向量,其理论保证取决于两个向量的 $(p, q)$ 范数与欧几里得范数之比,该比值度量了与欧几里得几何的偏离程度。其次,我们证明任何对称的空心相异矩阵都可以表示为一个广义幂距离矩阵,其中包含一个代表数据内部不确定性水平的附加参数。在此表示下,应用 JL 变换可产生具有乘法近似性的结果,其受控的加法误差项与偏离欧几里得几何的程度成正比。我们的理论结果基于输入数据偏离欧几里得几何的程度,提供了细粒度的性能分析,从而使得更广泛类别的数据能够实现实用且有意义的降维。我们在合成数据集和真实数据集上验证了我们的方法,证明了将 JL 引理扩展到非欧几里得设置的有效性。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
32+阅读 · 2021年3月29日
UNITER: Learning UNiversal Image-TExt Representations
Arxiv
23+阅读 · 2019年9月25日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员