The inverse geodesic length of a graph $G$ is the sum of the inverse of the distances between all pairs of distinct vertices of $G$. In some domains it is known as the Harary index or the global efficiency of the graph. We show that, if $G$ is planar and has $n$ vertices, then the inverse geodesic length of $G$ can be computed in roughly $O(n^{9/5})$ time. We also show that, if $G$ has $n$ vertices and treewidth at most $k$, then the inverse geodesic length of $G$ can be computed in $O(n \log^{O(k)}n)$ time. In both cases we use techniques developed for computing the sum of the distances, which does not have "inverse" component, together with batched evaluations of rational functions.
翻译:图形 $G 的反大地长度是所有不同的脊椎之间距离的逆数之和。 在有些领域,它被称为Harary 指数或图形的全球效率。 我们显示,如果$G是平面的,有零美元的脊椎,那么, $G 的反大地长度可以用大约O(n ⁇ 9/5}) 美元的时间来计算。 我们还显示,如果$G $ 以最多1美元为美元,那么, $G 的反大地长度可以用$(n\log ⁇ O(k)n) 的时间来计算。 在这两种情况下,我们使用开发的计算距离总和的技术来计算不具有“反向”成分的距离,同时对合理功能进行分批评估。