We consider a participatory budgeting problem in which each voter submits a proposal for how to divide a single divisible resource (such as money or time) among several possible alternatives (such as public projects or activities) and these proposals must be aggregated into a single aggregate division. Under $\ell_1$ preferences -- for which a voter's disutility is given by the $\ell_1$ distance between the aggregate division and the division he or she most prefers -- the social welfare-maximizing mechanism, which minimizes the average $\ell_1$ distance between the outcome and each voter's proposal, is incentive compatible (Goel et al. 2016). However, it fails to satisfy the natural fairness notion of proportionality, placing too much weight on majority preferences. Leveraging a connection between market prices and the generalized median rules of Moulin (1980), we introduce the independent markets mechanism, which is both incentive compatible and proportional. We unify the social welfare-maximizing mechanism and the independent markets mechanism by defining a broad class of moving phantom mechanisms that includes both. We show that every moving phantom mechanism is incentive compatible. Finally, we characterize the social welfare-maximizing mechanism as the unique Pareto-optimal mechanism in this class, suggesting an inherent tradeoff between Pareto optimality and proportionality.


翻译:我们考虑一个参与性预算编制问题,即每个选民就如何在几种可能的替代方案(如公共项目或活动)之间分配单一的可变资源(如金钱或时间)提出建议,这些提议必须合并成一个单一的总分配。在美元1美元的优惠下,选民的不能利用是由总分配与他或她最喜欢的划分之间的1美元距离给予的。社会福利-最大化机制将结果与每个选民提议之间的平均1美元差幅最小化,这是相互兼容的奖励办法(Goel等人,2016年)。然而,它未能满足自然公平的相称性概念,过分强调多数偏好。在市场价格与Moulin(1980年)的通用中位规则之间建立联系,我们引入独立的市场机制,该机制既是奖励办法的兼容性,也是相称的。我们把社会福利-最大化机制和独立市场机制统一起来,方法是确定一种包括两者在内的广泛的移动幻象机制。我们表明,每个移动的幻象机制都是相互兼容的。最后,我们把这种内在的贸易机制定性为一种独特的标准。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
A Sheaf-Theoretic Construction of Shape Space
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月14日
VIP会员
相关资讯
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员