Misinformation, propaganda, and outright lies proliferate on the web, with some narratives having dangerous real-world consequences on public health, elections, and individual safety. However, despite the impact of misinformation, the research community largely lacks automated and programmatic approaches for tracking news narratives across online platforms. In this work, utilizing daily scrapes of 1,334 unreliable news websites, the large-language model MPNet, and DP-Means clustering, we introduce a system to automatically identify and track the narratives spread within online ecosystems. Identifying 52,036 narratives on these 1,334 websites, we describe the most prevalent narratives spread in 2022 and identify the most influential websites that originate and amplify narratives. Finally, we show how our system can be utilized to detect new narratives originating from unreliable news websites and to aid fact-checkers in more quickly addressing misinformation. We release code and data at https://github.com/hanshanley/specious-sites.
翻译:暂无翻译