We investigate the error of the randomized Milstein algorithm for solving scalar jump-diffusion stochastic differential equations. We provide a complete error analysis under substantially weaker assumptions than known in the literature. In case the jump-commutativity condition is satisfied, we prove optimality of the randomized Milstein algorithm by proving a matching lower bound. Moreover, we give some insight into the multidimensional case by investigating the optimal convergence rate for the approximation of jump-diffusion type L\'evys' areas. Finally, we report numerical experiments that support our theoretical findings.
翻译:我们调查了用于解决卡路里跳跃扩散蒸气差异方程式的随机化Milstein算法的错误。 我们根据比文献中已知的要弱得多的假设提供了完全的错误分析。 如果跳跃- 混合性条件得到满足, 我们通过证明匹配的较低约束来证明随机化的Milstein算法的最佳性。 此外, 我们通过调查跳跃扩散类型 L\' evys 区域近似的最佳趋同率来深入了解多层面案例。 最后, 我们报告了支持我们理论发现的数字实验。