This paper presents new machine learning approaches to approximate the solutions of optimal stopping problems. The key idea of these methods is to use neural networks, where the parameters of the hidden layers are generated randomly and only the last layer is trained, in order to approximate the continuation value. Our approaches are applicable to high dimensional problems where the existing approaches become increasingly impractical. In addition, since our approaches can be optimized using simple linear regression, they are easy to implement and theoretical guarantees are provided. Our randomized reinforcement learning approach and randomized recurrent neural network approach outperform the state-of-the-art and other relevant machine learning approaches in Markovian and non-Markovian examples, respectively. In particular, we test our approaches on Black-Scholes, Heston, rough Heston and fractional Brownian motion. Moreover, we show that they can also be used to efficiently compute Greeks of American options.
翻译:本文介绍了一些新的机器学习方法,以近似最佳制止问题的解决方案。这些方法的关键思想是使用神经网络,其中隐藏层的参数是随机生成的,只有最后一层是经过培训的,以接近持续值。我们的方法适用于现有方法越来越不切实际的高维问题。此外,由于我们的方法可以使用简单的线性回归优化,因此很容易实施,并且提供了理论保障。我们随机强化学习方法和随机的经常性神经网络方法分别超越了Markovian和非Markovian的例子中的最新和其他相关的机器学习方法。特别是,我们测试了我们在黑雪球、Heston、粗Heston和分形布朗运动中的方法。此外,我们证明这些方法也可以用来有效地计算美国选项中的希腊人。