Speech recognition applications cover a range of different audio and text distributions, with different speaking styles, background noise, transcription punctuation and character casing. However, many speech recognition systems require dataset-specific tuning (audio filtering, punctuation removal and normalisation of casing), therefore assuming a-priori knowledge of both the audio and text distributions. This tuning requirement can lead to systems failing to generalise to other datasets and domains. To promote the development of multi-domain speech systems, we introduce the End-to-end Speech Benchmark (ESB) for evaluating the performance of a single automatic speech recognition (ASR) system across a broad set of speech datasets. Benchmarked systems must use the same data pre- and post-processing algorithm across datasets - assuming the audio and text data distributions are a-priori unknown. We compare a series of state-of-the-art (SoTA) end-to-end (E2E) systems on this benchmark, demonstrating how a single speech system can be applied and evaluated on a wide range of data distributions. We find E2E systems to be effective across datasets: in a fair comparison, E2E systems achieve within 2.6% of SoTA systems tuned to a specific dataset. Our analysis reveals that transcription artefacts, such as punctuation and casing, pose difficulties for ASR systems and should be included in evaluation. We believe E2E benchmarking over a range of datasets promotes the research of multi-domain speech recognition systems. ESB is available at https://huggingface.co/esb.
翻译:语音识别应用包括多种不同的音频和文字分布,有不同的语音风格、背景噪音、转录符号和字符外壳。然而,许多语音识别系统需要特定数据集的调试(自动过滤、标点清除和弹壳的正常化),因此假设对音频和文字发布都有优先知识。这种调控要求可能导致系统无法向其他数据集和域进行概括化。为了促进多域语音系统的开发,我们在一套广泛的语音数据集中采用端到端语音识别(ESB)系统来评价单一自动语音识别(ASR)的性能。基准系统必须使用相同的数据预处理和后处理算法,假设音和文字数据发布方式是未知的。我们比较了一系列关于该基准的状态(SoTA)端到端系统(E2E),说明如何在广泛的数据分发中应用和评估单一语音识别(ESB)系统。我们发现E2-E研究显示,ESBSO系统在E系统中可以有效评估E2号。我们发现,E2-ES系统在对具体数据做出分析时,将E-Serview a dal real real laveal laveal sal ex a lade a ex laveal lax a ex a lave sup lave laveal ds a lave lave lave lave lave lave s s s lave lave lave lave a lave lad lad lad lad lad lave a lad lad lad lads a lad lad lad lad lads a lad lads a lads a lad lads a s s s s s lad lad lad lad s s s s s s s s s s s s s sal sal s sal ladal ladal sal sal sal sal lad lad lad lad lad lad lad lad lad lad lad lad ladal lad lad lad lad lad lad