In recent years a large literature on deep learning based methods for the numerical solution partial differential equations has emerged; results for integro-differential equations on the other hand are scarce. In this paper we study deep neural network algorithms for solving linear and semilinear parabolic partial integro-differential equations with boundary conditions in high dimension. To show the viability of our approach we discuss several case studies from insurance and finance.
翻译:近年来,出现了大量关于数字解决方案部分差异方程式基于深层次学习方法的大量文献;另一方面,异种差异方程式的结果很少。在本文中,我们研究了深度神经网络算法,以解决具有高度边界条件的线性和半线性半线性抛物线性局部异种方程式。为了显示我们方法的可行性,我们讨论了保险和金融方面的几个案例研究。