We propose a novel learning framework using neural mean-field (NMF) dynamics for inference and estimation problems on heterogeneous diffusion networks. Our new framework leverages the Mori-Zwanzig formalism to obtain an exact evolution equation of the individual node infection probabilities, which renders a delay differential equation with memory integral approximated by learnable time convolution operators. Directly using information diffusion cascade data, our framework can simultaneously learn the structure of the diffusion network and the evolution of node infection probabilities. Connections between parameter learning and optimal control are also established, leading to a rigorous and implementable algorithm for training NMF. Moreover, we show that the projected gradient descent method can be employed to solve the challenging influence maximization problem, where the gradient is computed extremely fast by integrating NMF forward in time just once in each iteration. Extensive empirical studies show that our approach is versatile and robust to variations of the underlying diffusion network models, and significantly outperform existing approaches in accuracy and efficiency on both synthetic and real-world data.
翻译:我们提出一个新的学习框架,利用神经平均场(NMF)动态来推断和估计不同传播网络的问题。我们的新框架利用Mori-Zwanzig形式主义来获取个人节点感染概率的精确进化方程式,使延迟差方程式与记忆整体相近,由可以学习的时间变异操作者来比较。直接使用信息传播级联数据,我们的框架可以同时学习传播网络的结构和节点感染概率的演变。还建立了参数学习和最佳控制之间的联系,从而形成一种严格和可实施的NMF培训算法。此外,我们表明,预测的梯度下降法可以用来解决具有挑战性的影响最大化问题,通过将NMF在每一次循环中仅仅一次的时间结合来计算梯度来非常快速地计算梯度。广泛的实证研究表明,我们的方法非常灵活和有力,可以改变基本的传播网络模型,大大超出合成数据和现实世界数据在准确性和效率方面的现有方法。