Spreading processes play an increasingly important role in modeling for diffusion networks, information propagation, marketing and opinion setting. We address the problem of learning of a spreading model such that the predictions generated from this model are accurate and could be subsequently used for the optimization, and control of diffusion dynamics. We focus on a challenging setting where full observations of the dynamics are not available, and standard approaches such as maximum likelihood quickly become intractable for large network instances. We introduce a computationally efficient algorithm, based on a scalable dynamic message-passing approach, which is able to learn parameters of the effective spreading model given only limited information on the activation times of nodes in the network. The popular Independent Cascade model is used to illustrate our approach. We show that tractable inference from the learned model generates a better prediction of marginal probabilities compared to the original model. We develop a systematic procedure for learning a mixture of models which further improves the prediction quality.
翻译:传播过程在为传播网络、信息传播、营销和舆论设置建模方面发挥着越来越重要的作用。我们处理的一个问题是,如何学习一种传播模型,使该模型产生的预测准确,随后可用于优化扩散动态和控制。我们侧重于一种具有挑战性的环境,即无法对动态进行充分观察,而各种标准方法,如最大可能性等,对于大型网络案例来说,迅速变得难以解决。我们采用了一种基于可扩展的动态电文传递方法的计算高效算法,这种算法能够学习有效传播模型的参数,因为关于网络节点激活时间的信息有限。流行的独立连载模型用来说明我们的做法。我们从所学模型中可以看出,与原始模型相比,对边际概率的预测更好。我们开发了一个系统化程序,以学习各种模型的混合,从而进一步提高预测质量。