Many useful parameters depend on nonparametric first steps. Examples include games, dynamic discrete choice, average exact consumer surplus, and treatment effects. Often estimators of these parameters are asymptotically equivalent to a sample average of an object referred to as the influence function. The influence function is useful in local policy analysis, in evaluating local sensitivity of estimators, constructing debiased machine learning estimators, in efficiency comparisons, and in formulating primitive regularity conditions for asymptotic normality, We show that the influence function is a Gateaux derivative with respect to a smooth deviation evaluated at a point mass. This result generalizes the classic Von Mises (1947) and Hampel (1974) calculation to estimators that depend on smooth nonparametric first steps. We give explicit influence functions for first steps that satisfy exogenous or endogenous orthogonality conditions. We use these results to generalize the omitted variable bias formula for regression to policy analysis for and sensitivity to structural changes. We apply this analysis and find no sensitivity to endogeneity of average equivalent variation estimates in a gasoline demand application.


翻译:许多有用的参数取决于非对称的第一步。例子包括游戏、动态的离散选择、平均准确消费盈余和处理效果。这些参数的估测者通常与称为影响函数的物体的抽样平均数基本相同。影响功能在地方政策分析、评估估计者对当地敏感度、构建不偏差的机器学习估计器、在效率比较中,以及在制订原始规律性正常性条件时非常有用。我们表明,影响功能是在点质量评估的平稳偏差方面的一种Gateaux衍生物。这导致将典型的Von Mises(1947年)和Hampel(1974年)的计算一般化为依赖平滑的非对称第一步骤的估测者。我们给满足外或内或内条件的初步步骤提供明确的影响力功能。我们利用这些结果将省略的可变偏差公式概括为政策分析的回归公式和结构变化的敏感性。我们应用这种分析,发现在汽油需求应用中,对平均等值变化估计的内在特性没有敏感度。

0
下载
关闭预览

相关内容

专知会员服务
52+阅读 · 2020年9月7日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
经典回顾 | Collaborative Metric Learning
机器学习与推荐算法
6+阅读 · 2020年9月18日
已删除
将门创投
6+阅读 · 2019年4月10日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
LibRec 精选:BERT原理和应用的图文教程
LibRec智能推荐
5+阅读 · 2018年12月22日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年9月28日
Entropic estimation of optimal transport maps
Arxiv
0+阅读 · 2021年9月24日
Arxiv
0+阅读 · 2021年9月24日
Arxiv
4+阅读 · 2018年3月14日
Arxiv
4+阅读 · 2018年1月15日
VIP会员
相关资讯
经典回顾 | Collaborative Metric Learning
机器学习与推荐算法
6+阅读 · 2020年9月18日
已删除
将门创投
6+阅读 · 2019年4月10日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
LibRec 精选:BERT原理和应用的图文教程
LibRec智能推荐
5+阅读 · 2018年12月22日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员