Density estimation plays a crucial role in many data analysis tasks, as it infers a continuous probability density function (PDF) from discrete samples. Thus, it is used in tasks as diverse as analyzing population data, spatial locations in 2D sensor readings, or reconstructing scenes from 3D scans. In this paper, we introduce a learned, data-driven deep density estimation (DDE) to infer PDFs in an accurate and efficient manner, while being independent of domain dimensionality or sample size. Furthermore, we do not require access to the original PDF during estimation, neither in parametric form, nor as priors, or in the form of many samples. This is enabled by training an unstructured convolutional neural network on an infinite stream of synthetic PDFs, as unbound amounts of synthetic training data generalize better across a deck of natural PDFs than any natural finite training data will do. Thus, we hope that our publicly available DDE method will be beneficial in many areas of data analysis, where continuous models are to be estimated from discrete observations.
翻译:密度估计在许多数据分析任务中发挥着关键作用,因为它从离散样本中推断出一种连续概率密度函数(PDF),因此,它被用于分析人口数据、2D传感器空间值读数或从3D扫描中重建场景等多种任务。在本文中,我们引入了一种由数据驱动的已知深度深度估计(DDE),以准确和高效的方式推断PDF,同时独立于域维度或样本大小。此外,在估算期间,我们不要求使用原始PDF,既不以参数形式,也不要求以以前或许多样本的形式,也不要求以许多样本的形式。这是通过在无限的合成多合成PDF流上培训非结构的神经网络,因为没有数量的综合培训数据在自然多的PDF甲板上比任何自然的有限培训数据都要广泛。因此,我们希望,我们公开提供的DDE方法将有益于许多数据分析领域,而通过离散观测可以估算出连续的模型。