Using the concepts of category and functor, we provide some insights and prove an intrinsic property of the category ${\bf AprS}$ of approximation spaces and relation-preserving functions, the category ${\bf RCls}$ of rough closure spaces and continuous functions, and the category ${\bf RInt}$ of rough interior spaces and continuous functions. Furthermore, we define the category ${\bf IS}$ of information systems and O-A-D homomorphisms, and establish the relationship between the category ${\bf IS}$ and the category ${\bf AprS}$ by considering a subcategory ${\bf NeIS}$ of ${\bf IS}$ whose objects are information systems and whose arrows are non-expensive O-A-D homomorphisms with surjective attribute mappings.
翻译:使用类别和配方的概念,我们提供一些见解,并证明近似空间和关系保护功能的$$bf AprS}、粗略封闭空间和连续功能的$bf RCls}和粗糙内地空间和连续功能的$bf Rint}的内在属性。此外,我们定义信息系统和O-A-D同质性的$bf IS}和O-A-D同质性的类别,并通过考虑一个小类$bf NeIS}的$bf NeIS},其目标为信息系统,其箭头是非穷的O-A-D同质特征图绘制,从而确定该类别与$bf AprS}之间的关系。