This study proposes a trainable sampling-based solver for combinatorial optimization problems (COPs) using a deep-learning technique called deep unfolding. The proposed solver is based on the Ohzeki method that combines Markov-chain Monte-Carlo (MCMC) and gradient descent, and its step sizes are trained by minimizing a loss function. In the training process, we propose a sampling-based gradient estimation that substitutes auto-differentiation with a variance estimation, thereby circumventing the failure of back propagation due to the non-differentiability of MCMC. The numerical results for a few COPs demonstrated that the proposed solver significantly accelerated the convergence speed compared with the original Ohzeki method.
翻译:暂无翻译