Full Waveform Inversion (FWI) is a large-scale nonlinear ill-posed problem for which implementation of the Newton-type methods is computationally expensive. Moreover, these methods can trap in undesirable local minima when the starting model lacks low-wavenumber part and the recorded data lack low-frequency content. In this paper, the Gauss-Newton (GN) method is modified to address these issues. We rewrite the GN system for multisoure multireceiver FWI in an equivalent matrix equation form whose solution is a diagonal matrix, instead of a vector in the standard system. Then we relax the diagonality constraint, lifting the search direction from a vector to a matrix. This relaxation is equivalent to introducing an extra degree of freedom in the subsurface offset axis for the search direction. Furthermore, it makes the Hessian matrix separable and easy to invert. The relaxed system is solved explicitly for computing the desired search direction, requiring only inversion of two small matrices that deblur the data residual matrix along the source and receiver dimensions. Application of the Extended GN (EGN) method to solve the extended-source FWI leads to an algorithm that has the advantages of both model extension and source extension. Numerical examples are presented showing robustness and stability of EGN algorithm for waveform inversion.


翻译:完整波形 Inversion (FWI) 是一个大规模非线性的问题, 使用牛顿型方法的费用是计算成本昂贵的。 此外, 当初始模型缺少低波序部分, 记录的数据缺乏低频内容时, 这些方法会困在不受欢迎的本地迷你模式中。 在本文中, Gaus- Newton (GN) 方法被修改来解决这些问题。 我们重写GN 系统, 用于多soure 多重接收器 FWI, 以等量的矩阵方程式形式, 其解决方案是双向矩阵, 而不是标准系统中的矢量。 然后我们放松对二向限制, 将矢量的搜索方向从矢量提升到矩阵。 这种放松相当于在次表下偏偏偏偏偏偏偏偏偏偏重轴中引入额外程度的自由。 此外, 使赫西亚矩阵的矩阵相互连接, 容易倒置。 为了计算理想的搜索方向, 我们简单解决了宽松的系统, 只需要将两个小矩阵转换成双向源和接收方。 扩展的GNU(EGNGN) 模型的扩展演算法的扩展法的扩展法是显示源FWIFWIFWIV的扩展法的扩展法的扩展法。

0
下载
关闭预览

相关内容

【硬核书】矩阵代数基础,248页pdf
专知会员服务
83+阅读 · 2021年12月9日
专知会员服务
159+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
14+阅读 · 2022年8月25日
Arxiv
16+阅读 · 2021年11月27日
Arxiv
17+阅读 · 2021年2月15日
Arxiv
19+阅读 · 2021年1月14日
VIP会员
相关VIP内容
【硬核书】矩阵代数基础,248页pdf
专知会员服务
83+阅读 · 2021年12月9日
专知会员服务
159+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员