Sward species composition estimation is a tedious one. Herbage must be collected in the field, manually separated into components, dried and weighed to estimate species composition. Deep learning approaches using neural networks have been used in previous work to propose faster and more cost efficient alternatives to this process by estimating the biomass information from a picture of an area of pasture alone. Deep learning approaches have, however, struggled to generalize to distant geographical locations and necessitated further data collection to retrain and perform optimally in different climates. In this work, we enhance the deep learning solution by reducing the need for ground-truthed (GT) images when training the neural network. We demonstrate how unsupervised contrastive learning can be used in the sward composition prediction problem and compare with the state-of-the-art on the publicly available GrassClover dataset collected in Denmark as well as a more recent dataset from Ireland where we tackle herbage mass and height estimation.
翻译:草本必须在实地收集,手工将草本分成各组成部分,加以干燥和权衡,以估计物种组成情况。在以前的工作中,利用神经网络的深思熟虑方法,通过仅从草原地区图示中估计生物量信息,提出更快、更具有成本效益的替代方法。然而,深思熟虑方法努力将生物量信息推广到遥远的地理位置,并需要进一步收集数据,以便在不同的气候中进行再培训和最佳运作。在这项工作中,我们通过在培训神经网络时减少对地面图象的需求,加强深思熟虑的解决方案。我们证明,在向上结构预测问题时,如何使用不受监督的对比学习,并比较丹麦收集的可公开获得的格拉斯科尔弗数据集的最新数据,以及爱尔兰提供的最新数据,在那里我们处理草本质量和高度估计。